TOOLING SYSTEMS PROCESS OPTIMIZATION CONSULTING IN MILLING STRATEGIES

SLOTWORX®

⊙ ... ANY **GROOVE** – IMPROVE YOUR CHIP-REMOVE

... ANY GROOVE -**IMPROVE YOUR CHIP-REMOVE**

C lotworx® from S to L offers to you a complete Irange of square shoulder face milling- and slotting end mills for universal applications: roughing and finishing of steel, aluminium, graphite, plastics as well as hardened materials and, in the meantime, for machining stainless steels also. For face-, groove-, pocket-, side- and shoulder-milling, outstandingly suitable for angular or circular plunging (ramping).

The **Slotworx**®-range is available with threaded shanks, plain shanks and clamping flats, shell type milling cutters and with our patent protected **DuoPlug**®-system for highest concentricity and maximum rigidity. These threaded shank milling cutter bodies in connection with our dense-antivibration adapters are extremely applicable for finishing operations. Exceptionally precision-manufactured cutter bodies guarantee excellent milling results.

Optimum coolant supply direct to the cutting edges avoids any chip built-up on the insert's cutting face and it ensures maximum process reliability and secure chip removal, also in difficult materials.

Small, but big in capability, the Slotworx®-"S" range features itself through exceptional easy cutting. Our **Slotworx**®-"M" range is for all-purpose usage. The **Slotworx**®-"L" range allows for cutting depths ap up to 14 mm and enables you to generate maximum possible machining rates from your machine capability available. There is always an appropriate tool for every possible machining process in our **Slotworx**®-product-range.

DuoPlug®

Shell type

Through our patent-protected incorporated insert- parameters. Smooth surface finish at the cavity's smoother running of our **Slotworx**®-range. Even in deep cavities you have a possibility to mill 90°-shoulders, accurate and virbration-free with high cutting

seats, a smaller Torx-screw can be used . This results bottom is possible through inserts with intigrated in less balancing errors and therefore to much finishing lands. In fact, cutting depths of ap = 14 mm are realisable and lead to extended chip volumes and increased velocity of your milling process.

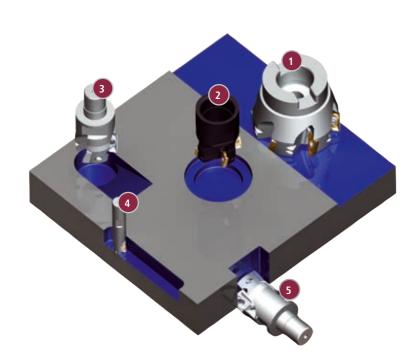
pokolm Svoha

SLOTWORX®

... ANY GROOVE -**IMPROVE YOUR CHIP-REMOVE**

indexable inserts. These intigrated finishing lands of our inserts care for outstanding surface finish in face-milling operations. Our high-accuracy coating technolgy. indexable inserts however, offer an optimum

Maximum demands to precision and accuracy relation between precision and efficiency. These are secured by ground and polished inserts can also be used for fine finshing operations in minor applications. A distinct increase of tool life is achieved by new carbide substrates and



size "M"

size "L"

APPLICATION SPECTRUM

- Slotworx® "L" for face-milling
- Slotworx® "M" for circular ramping
- 3 Slotworx® "L" for angular ramping
- 4 Slotworx® "S" for side- and shoulder milling
- 5 Slotworx® "L" for grooving

BRIGHT PROSPECTS...

40 and PVST are the new reatures for efficient machining of stainless- acid- and heat-resistant **40** and **PVST** are the new features for efficient materials. Optimized adapted rake angles and protective lands offer the best possible results for cutting edge stability and cutting capability. Extremely tough and high-temperature-resistant carbide together with our modified AlTiN-coating reduce built-up cutting edges, increase thermal stability and reduce frictional heat at the same time.

M40 PVST

In case you need further information about our stainless range, you can download our current brochure from our homepage www.pokolm.com or ask by phone / e-mail under ⊙ contacts (see back page) for this brochure.

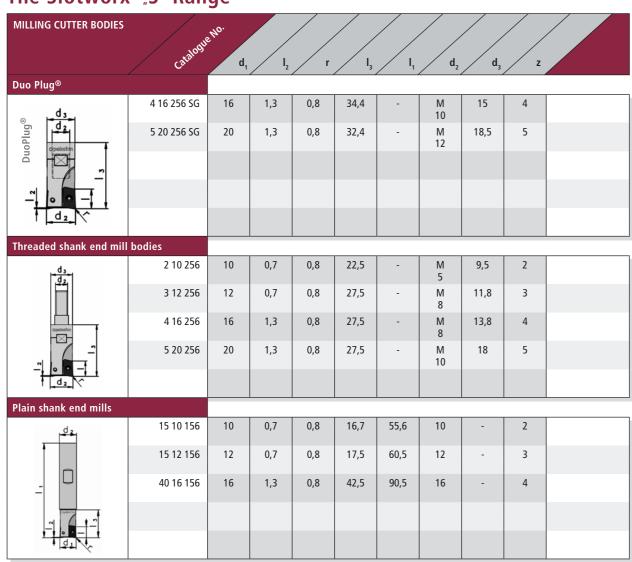
→ PRODUCTINFORMATION SLOTWORX®

YOU PROFIT FROM THIS SUMMARY OF ADVANTAGES:

- from face to groove to pocket to side to shoulder-milling
- universal application possibilities: roughing and finishing of steel, aluminium, graphite, plastics as well as hardened-and stainless steels
- optimized coolant supply direct to the cutting edges
- new-style surface-finish of inserts for improved machining of aluminium
- these new tools replace up to 3 traditional tool styles:
 APKT, LDLX and ADEW through rigidity, accuracy, vibration-decrease and optimized geometries
- integrated finishing lands achieve outstanding surface finish

→ CONTENT

	Page
•	SLOTWORX® "S" dimensions and operation data
⊕	SLOTWORX® "M" dimensions and operation data
⊕	SLOTWORX® "L" dimensions and operation data


pokolm S voha

⊕ PRODUCTINFORMATION SLOTWORX®

DIMENSIONS AND OPERATION DATA

The Slotworx® "S"-Range

Accessories

ACCESSORIES	Catalogue MO	Description		Dif	nensions	
	18 500	Torxscrew	M 1,8	L 3,7	Т6	
POKOLM	06 500	Torx screwdriver	Т6			

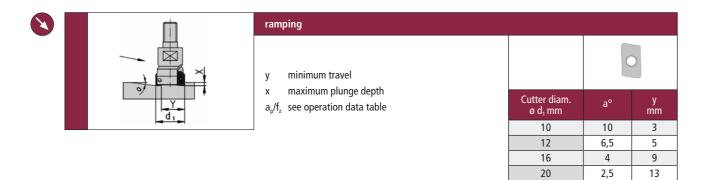
Starting torque for Torx® screw 18 500 $M_{\rm d}\!\!:$ 0,4 Nm

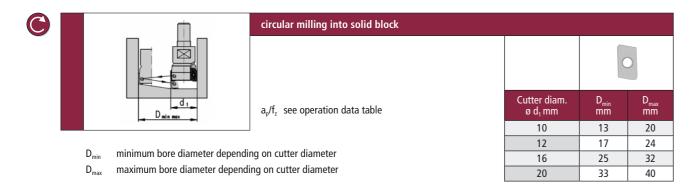
Slotworx®-Inserts Size "S", DIN-Description: XOMX 060208 R

INDEXABLE INSERTS	catalog	DIN- Identification	Grade	Coating)	/s	/ /r	M	
	02 71 840 R08	XOMX 060208 R	P40	PVML	6,94	2,45	0,8	1,8	

Cutting Speeds V_c in m/min

MATERIAL		/		madi	ining Rates Palo Pi	Jul .		
Steel	***	0,8	6,94	roughing finishing	120 – 250 150 – 300			
High-temperature alloys	$\overline{\nabla}$	0,8	6,94	pre- finishing	100 – 200			
Stainless Steel	\rightarrow	0,8	6,94	pre- finishing	140 – 220			


Application data (f_z/a_p)


MATERIAL		/		Madi	Ining Rates PAOP	unt.		
Steel	•	0,8	6,94	f_z (mm) a_p (mm)	0,02 - 0,17 0,1 - 2,5			
High-temperature alloys	•	0,8	6,94	f_z (mm) a_p (mm)	0,02 - 0,10 0,1 - 1,7			
Stainless Steel	•	0,8	6,94	$\begin{array}{c} f_z \text{ (mm)} \\ a_p \text{ (mm)} \end{array}$	0,02 - 0,14 0,1 - 2,5			

⊕ PRODUCTINFORMATION SLOTWORX®

EXTENDED OPERATION DATA

x maximum plunge depth f_z see operation data table, but reduce value to 30% Cutter diam. x max. mm 10 - 12 0,7 16 - 20 1,3

FROM PRACTICE TO PRACTICE

JOB TITLE:

The company PFT – Präzisions-Fertigungstechnik GmbH from Erwitte/Germany manufactures high precision components according to designs and requirements of their customers for more than 10 years; on request from material-purchase, complete operation-cycle up to final assembly. During those operation-cycles, target-settings of tolerance-ranges are checked, measured and recorded on the basis of prooved process-capabilities. This fulfils several requests of their customers. PFT is a supplier for aircraft-and space-as well as automotive-industires. Up to the time of introducing our **Slotworx®**-S-tooling, supplementary flats like spanner flats, clearance-flats on devices etc. were machined with solid carbide end mills. These tools often had too long cutting lengths, the customer needed to stock increased quantities in order to recognize regrinding

time and he had problems with a reduced product reliability due to very unstable components. For these exceptional obstinate operations, causing intense vibrations, combined with quick chipping of cutting edges due to brittle solid carbide end mills, we have tried our new <code>Slotworx®-tools</code>. Our new task was: machining joining flats for fastening elements, retaining rings and spanner flats on structural parts. Everywhere, when it was impossible to avoid vibrations through less optimum set-up and/or component's prevailing conditions, tools from our new <code>Slotworx®-S-range</code> can take advantages of its superiority.

The milling cutter body 4 16 256 (16 mm diam., r=0.8) could be compared easily with a solid carbide end mill, due to the same no. of teeth and equal cutting parameters.

MACHINE	MATERIAL	PROGRAMMING SYSTEM
Hermle C800U	1.7225	manual

Clamping flats on a rotationally symetrical component with a nominal width of 32 mm and a required depth of 16 mm have been machined in one cut. The component was clamped on the machine table of the Hermle milling machine, very unstably. Difficulties occurred not through the material itself, but the job title was, to machine this compo-

nent process-reliable, with no cutting-edge chipping in sufficient surface accuracy, despite of vibrations, activated by inefficient clamping possibilities. The smallest milling cutter body from our **Slotworx**®-S-range could realize our expectations. Refurbishing was replaced through simple turning or changing of inserts.

EXAMPLE FROM PRACTICE: RESULT:

component: spanner flats material: 1.7225

arbor: 50 08 750 (M 8, SK 40)

extension: none cutter body: 4 16 256

insert:

a_e (width of cut):

02 71 840, r = 0.8, P40

(16 mm diam., r = 0.8)

 $\begin{array}{lll} \text{coating:} & \text{PVML} \\ \text{overhang:} & 78,5 \text{ mm} \\ \text{v}_c \text{ (speed):} & 180 \text{ m/min} \\ \text{v}_f \text{ (feed rate):} & 1.432 \text{ mm/min} \\ \text{S (revolutions):} & 3.580 \text{ 1/min} \\ \text{f}_z \text{ (feed per tooth):} & 0,1 \text{ mm} \\ \text{a}_p \text{ (depth of cut):} & 2,0 \text{ mm} \\ \end{array}$

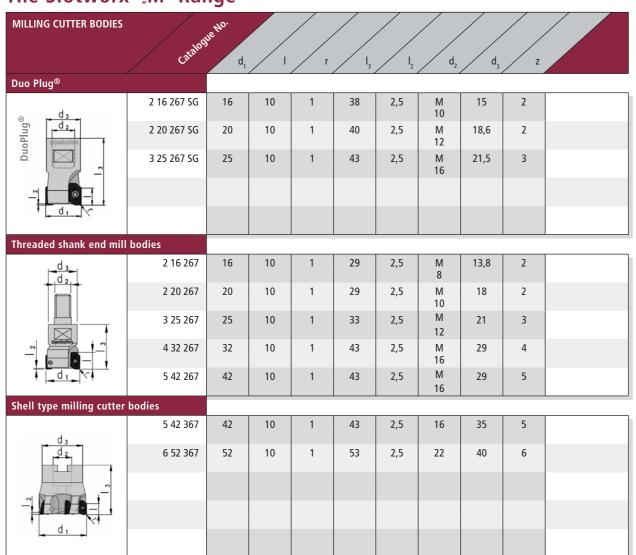
chip volume: 45,8 cm³/min =2,18 cu.in./min

16,0 mm

These spanner flats could be produced with increased process reliability and without interruptions. Vibrations, occuring during milling process have not caused any damage to the cutting edges. Due to the modular

threaded shank-interface, this tool can be used also for other operations and machining opportunities. Costs for refurbishing of solid end mills and for increased

availablility were avoided.


pokolm S voha

→ PRODUCTINFORMATION SLOTWORX®

DIMENSIONS AND OPERATION DATA

The Slotworx® "M"-Range

Accessories

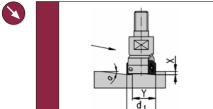
ACCESSORIES	Catalogi	Description Description	for O Direct sion's					
	25 505 KP	Torx screw	16 - 25	M 2,5	L 5,6	T 8 Plus		
	25 505 P	Torx screw	32 - 52	M 2,5	L 7,3	T 8 Plus		
POKOLM	08 500 P	Torx screwdriver	16 -52	Т8				

Starting torque for Torx® screw 25 505 M_d: 1,8 Nm

Slotworx®-Inserts Size "M", DIN-Identification: (XDHT/XDMT) 10T310

INDEXABLE INSERTS	catalor	DIN- Identification	Grade	Coating) 	/ s	/ /r	M	
	04 67 820	XDHT 10T310	K10	polished	10	3,59	1	2,5	
	04 67 837	XDMT 10T310	HSC05	PVFN	10	3,59	1	2,5	
	04 67 844	XDHT 10T310	P40	PVGO	10	3,59	1	2,5	
	04 67 848	XDMT 10T310	P40	PVGO	10	3,59	1	2,5	
S	04 67 860	XDHT 10T310	K10	PVTi	10	3,59	1	2,5	
,	04 67 860D	XDHT 10T310	K10	PVDiaN	10	3,59	1	2,5	
	04 67 896	XDMT 10T310	M40	PVST	10	3,59	1	2,5	

Cutting Speeds V_c in m/min


MATERIAL				Madi	ining Rates HSCOE	Philip K10 B	dished K10 PV	Jian Paga	NAO PUST
Steel	Ÿ	1	10	roughing finishing				100 – 200 160 – 250	
High-temperature alloys	₩	1	10	roughing finishing					20 – 50 30 – 80
Stainless Steel	*	1	10	roughing finishing					80 – 200 80 – 230
Cast Iron	₹	1	10	roughing finishing				110 – 150 120 – 180	
Non-ferrous	Ÿ	1	10	roughing finishing		200 - 800 200 - 800	200 – 800 200 – 800		
Hardened Steel	***	1	10	roughing finishing	35 – 100 80 – 180				

Application data (f_z/a_p)

MATERIAL		/		Madi	Hining Rates	Pully Kio b	dished K10 PV	diam Page	NGO MAO PYST
Steel	B	1	10	f _z (mm) a _p (mm)				0,05 - 0,35 0,1 - 9	
High-temperature alloys	Ş	1	10	f _z (mm) a _p (mm)					0,08 - 0,35 0,1 - 9
Stainless Steel	Ş	1	10	f _z (mm) a _p (mm)					0,08 - 0,35 0,1 - 9
Cast Iron	B	1	10	f _z (mm) a _p (mm)				0,08 - 0,4 0,1 - 9	
Non-ferrous	B	1	10	f _z (mm) a _p (mm)		0,08 - 0,35 0,1 - 9	0,08 - 0,35 0,1 - 9		
Hardened Steel	1	1	10	f _z (mm) a _p (mm)	0,08 - 0,25 0,1 - 5				

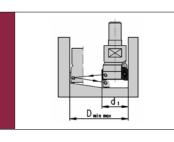
EXTENDED OPERATION DATA

axial plunging into solid block maximum plunge depth Cutter diam x max. see operation data table, but reduce value to 30% ø d₁ mm

0	×	
	d ₁	

у	minimum travel
Х	maximum plunge depth
a _n /f,	see operation data table

ramping



16 - 52

Cutter diam. ø d₁ mm	a°	y mm
16	< 24,5	5,3
20	< 14,5	9,3
25	< 8	14,3
32	< 5	21,3
42	< 3	31,3
52	< 2,5	41,3

2,5

circular milling into solid block

 a_p/f_z see operation data table

minimum bore diameter depending on cutter diameter maximum bore diameter depending on cutter diameter

Cutter diam. ø d ₁ mm	D _{min} mm	D _{max} mm
16	21,3	32
20	29,3	40
25	39,3	50
32	53,3	64
42	73,3	84
52	93,3	104

FROM PRACTICE TO PRACTICE

JOB TITLE:

producing absolutely accurate 90°-walls on holding for this job. He was limited through given dimensions blocks of injection moulding dies for plastics processing has always been a goal of the company Wolde from the town of Heiligkreuz-Steinach. Only a perfectly prepared holding block guarantees highest possible accuracy and durability for following production processes of all injection moulding dies. On this job, special attention was required for precision and economic efficiency regarding tool costs. Till now, the customer was using a 25 mm diam. multiple flute solid carbide end mill

for reach and overall length of this end mill. For this particular and for many other applications, our new Slotworx®-range is the ideal compliment, where a solid carbide end mill reaches its limitation. This is a golden opportunity for our Slotworx®-style of end mills. Our new range, with precision-ground inserts, is ready to face these challenges -and, it has passed its examination in masterly manner and velocity.

MACHINE	MATERIAL	PROGRAMMING SYSTEM
Deckel Maho	1.2312	Euklid
DMU 100 P		

remaining stock of 1 mm all over, after roughing. This part had been programmed in a z-constant circular-pocket cycle with constant depth setting increments in radial and axial direction. We found a rigid set-up on that DMU

This holding block, which had to be machined, had a 100P milling machine, a high-speed and dynamic 5-axis machining centre with vertical HSK-63A taper connection. All these conditions are ideal qualifications for using Pokolm-**Slotworx**®-milling cutters.

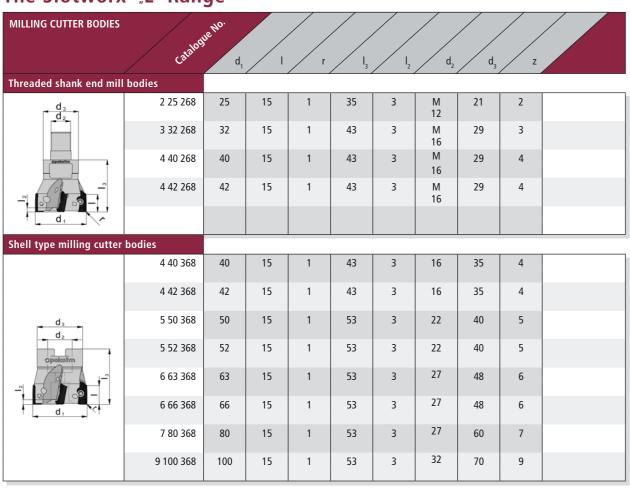
EXAMPLE FROM PRACTICE:

holding block component: material: 1.2312 arbor: 60 25 A63 S (25 mm diam., HSK 63) extension: 75 16 603 3 25 267 SG cutter body: (25 mm diam., r = 1)04 67 844, P40 insert: **PVGO** coating: overhang: 178 mm \mathbf{v}_{c} (speed): 314 m/min v_f (feed rate): 2.000 mm/min **S** (revolutions): 4.000 1/min **f**_z (feed per tooth): 0.25 mm a_p (depth of cut): 3,0 mm

0,1 mm

a_e (width of cut):

Expected and requested accuracy has been reached immediately to customer's satisfaction. Now, the customer is able to produce his holding blocks with those exceptionally required tool-overhangs of > 100 mm process-reliable and efficient in very short time. This kind of tooling is also avaible now for machining aluminium, and it is the right way for further success of Pokolm-Voha-tooling.



→ PRODUCTINFORMATION SLOTWORX®

DIMENSIONS AND OPERATION DATA

The Slotworx® "L"-Range

Accessories

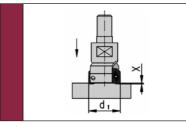
ACCESSORIES	Catalogue No.	Destiption		Dir	Rensions	
	35 500	Torx screw	M 3,5	L 7,5	T 15	
POKOLM	15 500	Torx screwdriver	T 15			

Starting torque for Torx $^{\otimes}$ screw 35 500 M $_{\mbox{\tiny d}}$: 3,45 Nm

Slotworx®-Inserts Size "L", DIN-Identification: XDMT 155210

INDEXABLE INSERTS	catalor	DIN- Identification	Grade	Coating	» / I	/ s	/ / r	M	
	05 68 848	XDMT 155210	P40	PVGO	15	5,2	1	M 3,5	
- 8	05 68 896	XDMT 155210	M40	PVST	15	5,2	1	M 3,5	
/ S									

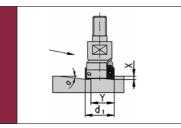
Cutting Speeds V_c in m/min


MATERIAL		/ / .		Maci	ining Rates	VGO MADE	N ⁴⁵¹	
Steel	*	1	15	roughing finishing	110 – 200			
High-temperature alloys	₩	1	15	roughing finishing		40 – 80 60 – 120		
Stainless Steel	Ÿ	1	15	roughing finishing		80 – 180 110 – 250		
Cast Iron	•	1	15	roughing finishing	100 – 200			

Application data (f_z/a_p)

MATERIAL	/		Madi	hing Rates	VGO MADE	Mest	
Steel	1	15	f _z (mm) a _p (mm)	0,1 - 0,5 0,2 - 14			
High-temperature alloys	1	15	f _z (mm) a _p (mm)		0,08 - 0,3 0,1 - 14		
Stainless Steel	1	15	f _z (mm) a _p (mm)		0,08 - 0,5 0,1 - 14		
Cast Iron	1	15	f _z (mm) a _p (mm)	0,1 - 0,5 0,2 - 14			

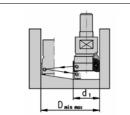
EXTENDED OPERATION DATA



axial plunging into solid block

- maximum plunge depth
- see operation data table, but reduce value to 30%

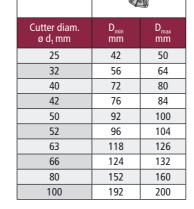
Cutter diam. ø d₁ mm	x max. mm
25 - 100	3



ramping

- minimum travel
- maximum plunge depth
- a,/f, see operation data table

Cutter diam. ø d ₁ mm	a°	y mm
25	< 8,3	17
32	< 5,9	24
40	< 4,4	32
42	< 4,2	34
50	< 3,3	42
52	< 3,2	44
63	< 2,5	55
66	< 2,4	58
80	< 1,9	72
100	< 1,5	92



circular milling into solid block

18

a_n/f_z see operation data table

minimum bore diameter depending on cutter diameter maximum bore diameter depending on cutter diameter

FROM PRACTICE TO PRACTICE

JOB TITLE:

Optimizing of machining a component from Cu-HCP (CW021A) (best selected copper min.99.5% purity), with a tensile strength of approx. 300 N/mm² only, but a breaking elongation of over 40%. The metal removal volume for this component was 55%, for a quantity of 48 pieces. Previously, this component with unmachined dimensions of 258 mm long, 123 mm wide and 211 mm high was machined with a Square Shoulder Face- and Slot Milling Cutter with inserts having 0.8 mm corner radius. But with this tool, maximum cutting depth of ap = 3 mm could be realized, otherwise the component started vibrating under the enormous cutting pressure. This was a very negative influence to the roughing operation. Although the customer had rated the tool life of the inserts as satisfying, this was not our valuation at all.

The no. of components was increasing constantly, and regarding production capacity, a decision had to be made. A solution for better machining possibilities was found by our applications engineers immediately. The new milling cutter body from our Slotworx®-L range 5 52 368 (52 mm diam., r = 1) should be suitable outstandingly for this application, and it was selected together with our new indexable inserts 05 68 896, specially developed for cutting corrosion- acid- and heat-resistant materials, having sharp, but slightly radiused cutting edges and our special coating with lubrication additives. This special coating avoids chip-built-up of this best selected copper and cares together with a sufficient coolant supply for optimum chip removal.

MACHINE	MATERIAL	MACHINE CONTROL
OKUMA	Cu-HCP	manual

tour-parallel in z-constant cycle in climb milling as well as conventional milling. Regarding machining time, the feed rate and thus the chip volume has been increased by 4 times. This results in a reduction of the previous machining time from

This component has been produced coun- approx. 30 minutes to slightly more than 6 minutes. Through the special design of the minor cutting edge of these **Slotworx**®-L inserts we could achieve very good surface smoothness and minor waviness in the vertical parts of the component, even in cutting depth ap of 5 mm.

EXAMPLE FROM PRACTICE:

component slot material: Cu-HCP, CW021A

50 22 710 arbor:

(22 mm diam., SK 50)

(52 mm diam., r = 1)

5 52 368 cutter body

insert:

05 48 896, M40

coating: **PVST** overhang: 103 mm 571 m/min \mathbf{v}_{c} (speed): v_f (feed rate): 4.000 mm/min S (revolutions): 3.500 1/min f_z (feed per tooth): 0.229 mm a_p (depth of cut):

640 cm³/min =39 cu.in./min chip volume

machining time 06:07 min

ae (width of cut):

RESULT:

Machining time of this component has been reduced from 5 to 1.5 hours. This results - for 48 components and a calculated machine hour rate of 50€/hour – in savings of approx. more than 8000€. Plus an increased machine availablility of 168 hours, which represents working hours of a complete month anyhow. This time saving can be used for other projects.

SLOTWORX®

SLOTWORX®

CONTACT

Pokolm Frästechnik GmbH & Co. KG Adam-Opel-Straße 5 33428 Harsewinkel Germany

fon: +49 5247 93 61-0 fax: +49 5247 93 61-99 email: info@pokolm.de internet: www.pokolm.com Voha-Tosec Werkzeuge GmbH Schreinerweg 2a + 2b 51789 Lindlar Germany

fon: +49 2266 4781-0 fax: +49 2266 4781-40 email: info@voha-tosec.com internet: www.voha-tosec.com

